Incremental Computation of Pseudo-Inverse of Laplacian
نویسندگان
چکیده
A divide-and-conquer based approach for computing the Moore-Penrose pseudo-inverse of the combinatorial Laplacian matrix (L) of a simple, undirected graph is proposed. The nature of the underlying sub-problems is studied in detail by means of an elegant interplay between L and the effective resistance distance (Ω). Closed forms are provided for a novel two-stage process that helps compute the pseudo-inverse incrementally. Analogous scalar forms are obtained for the converse case, that of structural regress, which entails the breaking up of a graph into disjoint components through successive edge deletions. The scalar forms in both cases, show absolute element-wise independence at all stages, thus suggesting potential parallelizability. Analytical and experimental results are presented for dynamic (time-evolving) graphs as well as large graphs in general (representing real-world networks). An order of magnitude reduction in computational time is achieved for dynamic graphs; while in the general case, our approach performs better in practice than the standard methods, even though the worst case theoretical complexities may remain the same: an important contribution with consequences to the study of online social networks.
منابع مشابه
Incremental Computation of Pseudo-Inverse of Laplacian: Theory and Applications
A divide-and-conquer based approach for computing the Moore-Penrose pseudo-inverse of the combinatorial Laplacian matrix (L) of a simple, undirected graph is proposed. The nature of the underlying sub-problems is studied in detail by means of an elegant interplay between L and the effective resistance distance (Ω). Closed forms are provided for a novel two-stage process that helps compute the p...
متن کاملOn the pseudo-inverse of the Laplacian of a bipartite graph
We provide an efficient method to calculate the pseudo-inverse of the Laplacian of a bipartite graph, which is based on the pseudo-inverse of the normalized Laplacian.
متن کاملInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملSome remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...
متن کاملGeneralized Laplacians and First Transit Times for Directed Graphs
In this paper, we extend previous results on average commute-times for undirected graphs to fully-connected directed graphs, corresponding to irreducible Markov chains. We introduce an unsymmetrized generalized Laplacian matrix and show how its pseudo-inverse directly yields the one-way first-transit times and round-trip commute times with formulas almost matching those for the undirected graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014